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Abstract: By shifting towards renewable energy sources, manufacturing facilities can significantly
reduce their carbon footprint. This environmental issue can be addressed by developing sustainable
production through on-site renewable electricity generation and demand-side management policies.
In this study, the energy required to power the manufacturing system is obtained from different
energy sources: the conventional grid, on-site renewable energy, and an energy storage system. The
main objective is to generate a production schedule for a flexible multi-process and multi-product
manufacturing system that optimizes the utilization and procurement of electricity without affecting
the final demand. A mathematical programming model is proposed to minimize both the total
production costs and energy costs, considering a time-of-use pricing policy and an incentive-based
program. The uncertainty in renewable energy generation, specifically under the worst-case scenario,
is taken into account and the model is transformed into a robust two-stage optimization model. To
solve this model, a decomposition approach based on a genetic algorithm is applied. The effectiveness
of the proposed model and algorithm is tested on a real industry case involving feed-animal products.
A sensitivity analysis is conducted by modifying problem parameters. Finally, a comparison with the
nested Column and Constraint Generation algorithm is performed. The obtained results from these
analyses validated the proposed model and algorithm.

Keywords: production scheduling; demand-side management; onsite renewable; uncertainty; robust
optimization; genetic algorithm

1. Introduction

Climate change presents a major concern, and there is a growing recognition among
governments and companies of the need to take concrete actions to address the impact of
the global carbon footprint. The industrial sector, being one of the largest energy consumers
and greenhouse gas (GHG) emitters worldwide, faces significant pressure to reduce its
carbon footprint. According to [1], approximately 24% of global GHG emissions are
attributed to industrial energy consumption, while industrial processes contribute to about
5% of these emissions. The primary source of GHG emissions in industrial activities is
the utilization of fossil fuels for electricity generation. In this way, improving the energy
efficiency of the manufacturing process is being recognized as a promising pathway towards
sustainable manufacturing, offering both environmental benefits and opportunities for
cost savings [2]. Achieving cleaner production involves enhancing the energy efficiency of
process equipment and incorporating energy and resource efficiency considerations into
production scheduling [3]. Integrating an energy management system into production
scheduling can not only improve economic and environmental performance, but it also can
aid in balancing the supply and demand of electricity during peak periods without the need
for additional infrastructure investments. The reduction of energy consumption during
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peak periods can be achieved through the implementation of a demand response (DR)
program, which is recognized as a highly promising aspect of demand-side management
(DSM) [4]. DR refers to the alteration of electricity usage by end users in response to changes
in electricity prices over time [4,5]. It serves as an effective means to maintain a balance
between supply and demand [6]. Various solutions and mechanisms are encompassed
within DR, including real-time pricing, critical peak pricing, and time-of-use (TOU) pricing,
among others [7]. TOU pricing is particularly popular as a demand response mechanism,
as it incentivizes electricity consumers to shift their power consumption from high-priced
peak periods to low-priced off-peak periods [8]. Manufacturing industries can benefit
significantly from this pricing scheme by shifting their production activities away from peak
periods, leading to substantial energy cost savings [7]. Numerous studies have addressed
production scheduling under TOU electricity pricing. Ref. [9] developed an optimization
model for process industries with batch and continuous stages to determine optimal
production scheduling under TOU tariff structures. Ref. [8] investigated the implementation
of a TOU-based electricity demand response strategy for a sustainable manufacturing
system with multiple machines and buffers. They formulated a mathematical model
to minimize total electricity consumption and cost while adhering to production targets.
Ref. [10] expanded on their previous study by conducting monotonicity analysis on machine
and buffer parameters. Ref. [11] established a Nonlinear Integer Programming (NIP) model
based on a novel buffer inventory policy to reduce electricity consumption during peak
periods without compromising the manufacturing system. Ref. [12] relaxed the throughput
constraint and integrated potential production losses into the objective function of the NIP
model. Ref. [7] proposed a multi-objective optimization model to address the job-shop
scheduling problem under TOU electricity prices.

Another way to meet excessive peak electricity demands and reduce greenhouse gas
(GHG) emissions is through the utilization of renewable energy resources. These cleaner re-
sources provide a viable strategy for achieving energy cost reduction while simultaneously
reducing carbon emissions. Incorporating renewable energy sources like solar and wind
energy into the manufacturing process enables a significant reduction in carbon emissions,
supporting the development of sustainable manufacturing practices [13]. However, it
should be noted that renewable energy is subject to intermittency and fluctuates with
weather variations. The inherent uncertainty in renewable energy resources can introduce
inaccuracies in scheduling solutions. To address these challenges, the implementation of
energy storage systems (ESS) has emerged as a promising solution [14]. ESS can store
excess energy generated by renewable sources during periods of high production and make
it available during times when renewable energy production is low or unavailable. In
recent years, there have been several studies focusing on the utilization of on-site renewable
energy generation systems to power industrial plants. For instance, ref. [15] considered the
use of on-site renewable energy as support for implementing diverse demand response
(DR) programs in manufacturing facilities. The authors proposed a stochastic programming
model to maximize annual utility savings by selecting appropriate on-site renewable energy
systems (RES). In [16], the use of renewable energy through wind turbines integrated with
the electrical grid was investigated within the context of dynamic production schedul-
ing. They formulated a mixed-integer linear programming (MILP) model to minimize the
expected total energy cost. Similarly, ref. [17] developed a multi-stage stochastic model
to address production planning in a manufacturing system powered by on-site and grid
renewable energy. Ref. [18] presented a two-stage stochastic optimization method to study
the scheduling problem in a flow-shop system with an on-site wind power supply. The
integration of on-site renewable generation and energy storage systems in the context of
flow-shop scheduling has also been studied [14]. The authors formulated a two-stage
multi-objective stochastic program to determine the optimal production schedule and
energy supply decisions. Furthermore, ref. [19] established a mathematical programming
model to address the multi-process production scheduling problem by considering on-site
renewable energy supply, grid power supply, on-site energy storage systems, and different
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demand-side management (DSM) policies. They formulated a two-stage robust optimiza-
tion framework to incorporate uncertainties related to renewable energy and generate a
robust production schedule. Additionally, [20] developed a dynamic approach to manu-
facturing system scheduling that aligns machine power with the availability of renewable
energy without compromising production and market requirements.

By incorporating renewable energy sources, conventional grid energy, and ESS into the
production scheduling model, it is possible to achieve sustainable production practices by
reducing the environmental impact of manufacturing processes, such as carbon emissions,
and promoting the use of clean and renewable resources. Additionally, the hypothesis
proposes that this integration can lead to cost savings in both production and energy
consumption, indicating the potential economic benefits of implementing such a system. In
this context, this research paper focuses on addressing the production scheduling problem
in a flexible multi-process and multi-product manufacturing system that is powered by
on-site renewable energy, conventional grid energy, and an on-site energy storage system
(ESS). The objective of this study is to minimize both the global production cost and
energy costs under different DR policies, including TOU pricing policies and an incentive-
based program involving power consumption reduction requests from the utility company.
To tackle the uncertainties associated with renewable energy supply, a two-stage robust
optimization framework is developed. The problem is formulated as a mixed-integer linear
programming (MILP) model. To solve this complex problem, a decomposition approach
based on a genetic algorithm is employed. The model outputs of this study include flexible
multi-processes, inventory levels, back-orders, on-site renewable energy, ESS dynamics,
and the consumption amounts of both conventional and renewable energy under different
DR and incentive-based programs. The effectiveness of the proposed model is tested on a
real industry case of animal-feed products. The main contributions of this work are:

e  Developing a comprehensive model that addresses the production scheduling problem
in a flexible multi-process and multi-product manufacturing system.

e Incorporating a two-stage robust optimization framework to handle uncertainties
in renewable energy supply and employing a decomposition approach based on a
genetic algorithm to solve the complex optimization problem.

e  Performing numerical experiments, sensitivity analysis, and a comparison with the
nested Column and Constraint (CCG) algorithm to show the effectiveness of both the
model and algorithm.

The rest of the current paper is organized as follows. Section 2 describes the considered
problem and presents the mathematical model. In Section 3, the different resolution
approaches are developed. Section 4 reveals the results through numerical experiments on
a real-world case study and other numerical experiments. Finally, conclusions and future
work directions are presented in Section 5.

2. Problem Description and Mathematical Model
2.1. Problem Description and Mathematical Model

This paper focuses on investigating the implementation of sustainable production
scheduling in a flexible multi-process and multi-product manufacturing system. The
system considered in this study involves both batch and continuous processes, with buffers
incorporated between adjacent processes. These buffers play a crucial role in ensuring
smooth production flow and minimizing disruptions.

In the context of the animal-feed industry, which relies heavily on energy-intensive
machines for thermal and mechanical operations, energy cost becomes a significant concern.
To address this issue, renewable energy sources are explored as a promising alternative to
achieve sustainable production with reduced carbon emissions. The manufacturing system
in this study procures energy from three different sources: the conventional grid, on-site
renewable energy generation, and an ESS (e.g., see Figure 1). On-site renewable energy
is utilized for power production activities and charges the ESS. The ESS is employed to
efficiently manage the intermittency of renewable energy by storing excess energy for later
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use. The primary objective of this research is to develop a production scheduling model
that optimizes energy utilization while ensuring no impact on the final delivery demand
for each product. To achieve this, a mathematical programming model is proposed. The
model aims to minimize both the total production cost and energy cost, while respecting
production throughput requirements and adhering to energy supply policies.
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Figure 1. Reference context: manufacturing system with on-site RES and ESS.

2.2. Mathematical Model

In this section, the production scheduling problem, considering energy supply deci-
sions, is formulated as a mixed-integer linear programming (MILP) model. To enhance the
clarity of the model presentation, the sets, parameters, and decision variables are listed in
Appendix A.

2.2.1. Objective Functions

The aim of the proposed MILP is to simultaneously minimize:

1-Production costs (Equation (1)), denoted as Cp,o4, which is calculated as the sum of
the buffering cost, the holding cost of final products, and back-ordered costs. It is important
to note that the processing cost is not considered in this study, as it does not affect the
production cost regardless of changes in the production schedule.

_ V. q.. ‘
Cprod=Y_yer ZpGP Ziel,, CpYipt + Cpipt + Cpvip 1)

2-Energy costs (Equation (2)), denoted as C,4, which considers the expenses associated
with the charging and discharging dynamics of the ESS, the conventional energy cost, on-site
renewable energy costs, and incentives for accepting power consumption reduction requests.

- - 1) (1 2) (2
Ce= ZzteT(C;r"’tJr top +gt( )~e§ ) "’85 )‘eg ) _8t+‘ﬂt> 2
Hence, the objective function is expressed as follows:

C= min(cprod +CE) 3)
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2.2.2. Production Scheduling Constraints

The production scheduling optimization problem is subject to: (1) demand satisfaction
constraints, (2) flow balance constraints, (3) production and inventory capacity constraints,
(4) production continuity constraints, (5) batch process constraints, and (6) non-negativity
constraints, which are described hereafter.

1-Demand satisfaction constraints: constraints (4) express the relation between the
final product, inventory level, and backorders and final demand.

XpXipt + Qipt—1— Fipt — Vipt—1 + Vipt = Dips, VEeT, Vped, Viel, 4)

2-Flow balance constraints: constraint sets (5) and (6) model the production and
buffering of product i in process p at period ¢, respectively.

_ P SO RN )
p Xipt = Zp/zl bi, ppr Xy g+ Xy VIE€EL, VpEP,VEET, 5)
P 1 2 .
Yipt = Ly bippr ~y§/p)/p/,t+y§,p),t, Viel,VpeP VteT, )

Constraints (7) and (8) ensure the flow equilibrium for process p at period ¢ for
production and buffering, respectively.

P 1 1 .
Xipt = Yoy bi,p/,p( T L ) viel, , pe{2.,|P|},VteT (7)

Yipt = Xty i€l VpEP, VIET, ®)

3-Production and inventory capacity constraints: the cycle time capacity for each
process is modeled in (9), where T%: represents the number of products that can be processed

on process p in one period.
lellpt< ,Vp €eP,VteT )

The buffering capacity of process p is defined in (10), and the maximum level of final
product inventory is expressed in (11).

Zielp Yipt <Np, Vi €1, Vp €P,VteT (10)

Zielp Gipt < lnax, Vp €S, VEET, (11)

4-Production continuity constraints: constraint (12) ensures the production continuity
of all the processes during 24 h, and constraint (13) imposes that the final inventory at
period T must be equal to the initial inventory.

9ipr =10;p, Vi €1, Vp €6 (13)

5-Batch process constraints: The integration of these constraints in the mathematical
model guarantee a feasible production schedule. Constraint (14) ensures that the incoming
flow to the batch process should be greater than the lot size and lower than the production
capacity of this process. The setup constraint is expressed in Constraint (15), where M is
a big parameter that imposes an upper bound on the production quantity. The capacity
production of batch process is defined in Constraint (16).

(1) 1 )
)< Zb,p,p( ) Sq Viel Vpeo VieT, (49
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Y e Xips <M:Seps Viel, Vpe VieT (15)
Tp-zidpxl-,p,t —O—fp,t-Sep,t <1,Vie Ip , vV pE 0, VteT (16)
6-Non-negativity: Constraints (17) and (18) provide variable types.
1 2 1 2 )
Xiptr Yipts xfrp)’p,’t, xl(’p)/t, yflp),p/,t, yl(’p)/t, Qipt: Vipt =0 Vi€l, ,peEP,V pPeP,VteT (17)
Sept =0o0r Sepr=1,VteT,Vpeb (18)

2.2.3. The Energy Policies Constraints

The energy policies constraints under TOU electricity prices are described as follows.

1-ESS constraint: The charge/discharge dynamics of the ESS are defined in (19)—(23).
Lower and upper bounds on the amount of energy stored in an ESS at period t are imposed
by (19). Constraint (20) defines the state of charge of the ESS at period ¢, which is equal
to the state of charge of the ESS over the previous period, s;_1 plus the amount of power
energy to charge the ESS during the period ¢, r,” minus the amount of power energy to
discharge the ESS at the period t, 7, . The charge and discharge capacities of the ESS are
expressed in (21) and (22), respectively. Constraint (23) imposes that the final state of charge
of the ESS at period T must be the same as the initial charge level.

Snin< 8t < Spax VtET (19)

_ |
St =841+ N1 —rtF,VtET (20)
rm <R VteT (21)
rr <R VteT (22)
st = So (23)

2-DSM policies and energy sources: The dynamic of the energy management system
is defined in (24)—(26). Constraint (24) ensures that the total energy requirements for the
production processes are satisfied, where the right-hand side represents the energy supplied
by the on-site renewable energy, the grid energy, and the ESS. Constraint (25) models the
distribution of the generated on-site renewable energy between consumed energy and the
ESS. This constraint is formulated as an inequality in order to avoid the risk associated with
the uncertainty of the renewable energy. Constraint (26) models the conventional energy
grid supply considering the DSM policy of power consumption reduction requests.

1 _ 2 1
Y Y ep Epipe =17 el eV, vt e T (24)
G>eVarf, vteT (25)
€§2) + Rt ar <R NteT (26)

3-Non-negativity: non-negativity and binary requirements are modeled in constraint (27).

2)

st,rt*,r[,eg ,eEl) >0,a€{0,1}, VteT (27)
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2.3. The Transformed MILP under Uncertain RES: Robust Approach

Uncertainty poses a significant challenge in industrial processes. Operational decisions
need to be made considering economic and energy-related factors that are highly time-
sensitive, such as final demand and electricity prices. In this paper, the fluctuating nature
of renewable energy is addressed in the proposed optimization approach to enhance
the model’s performance. Inspired by [19], this study incorporates a robust approach
to integrate uncertainty regarding on-site RES into the MILP model. The objective of
the robust optimization methodology is to determine the “best uncertainty-immunized”
solution under the worst-case scenario for each uncertain parameter [21,22].

2.3.1. Uncertain RES and Budget-Uncertainty Set

In this section, it is supposed that the generation of renewable energy on-site belongs
to uncertainty set G; € pj. Let G; be the uncertain parameter and G; be the nominal
value for available energy. The uncertain parameter G; can deviate from the mean value G¢
within the interval [ —051), at(l)} , where ot(l)+, ogl)f represent the scaled deviations. Then,

the uncertainty set y1; can be modeled as follow:

U1 = {Gt = Gt+A0§l)'0't(1), VieT

Aofl): ole — ot(l)*, VteT
o<Vt <1, wteT

0<o)" <1, VteT

Yool < r<1>}
teT

1 is usually denominated as a budget-uncertainty set because of the user-specific
parameter I'1), also called budget of uncertainty, which imposes an upper bound on the
variation of the uncertain parameter to avoid very pessimistic solutions [22]. In this study,
it is supposed that 0 < I < T, where T represents the number of periods.

2.3.2. Robust Optimization Model

The goal of robust optimization is to define the production scheduling under the
worst-case scenario. Thus, this approach aims to determine the best solution that remains
feasible for any realization of the uncertain parameter within the uncertainty set [22]. The
integration of the budget-uncertainty set of RES into the deterministic MILP leads to the
following two-stage robust model:

mir}(CTx—l—néel\xn;’iendTa +f] (e, +e2) (28)
Ax<b (29)
Bx+Ha+Jie; +Jeo <h-+g; (30)
X, e;,ep >0, (31)

where g, represents the vector corresponding to renewable energy availability, G;. x is the
. . . 1 2 1 2

variables vector related to production planning: Xip,tr Yip,tr xi(/p%p//t, xl(,p)/t, ygp)/p//t, 3/1‘(, p)/t s it

Vi ps and Sep s . e denotes the continuous energy variables vector related to renewable

energy consumption. The vector e; includes the other continuous energy decision variables,
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(2)

St, rt+ ,7; ,€; . The vector a is a binary decision variables vector related to power reduction
consumption requests. C, d,f;, present the appropriate matrix and vectors related to the
objective function. Finally, b, h, A, B, H, ], ], are the appropriate matrix and vectors related
to the model constraints. The objective function C expressed in (28) is formulated as Min-
Max-Min problem. Production Constraints (4)—(17) are reflected in (29). Energy Constraints
(19)—-(26) are reflected in (30). Finally, domains variables (18) and (27) are reflected in (31).

3. Solution Approaches

The two-stage robust optimization model (28)—(31) is designed to optimize the man-
ufacturing scheduling under the worst-case scenario of RES output. This model, known
as Min-Max-Min, represents a highly complex problem (NP-Hard problem) that cannot
be efficiently solved using classical optimization techniques. To address this challenge,
decomposition algorithms like Benders decomposition and the Column and Constraint
Generation (C and CG) algorithm based on duality offer promising solutions, enabling the
formulation of tractable solutions. These algorithms decompose the robust optimization
model into a Master Problem (MP) and a Sub-problem (SP). They dynamically generate
constraints with recourse variables in the primal space [23] based on a given uncertainty
realization. To ensure convergence within a few iterations, an accurate exchange of in-
formation between the MP and the SP is essential. In other words, an optimal global
solution must be obtained for each problem. Despite their promising capabilities, these
algorithms have several inherent limitations. Firstly, their computational complexity can
be a significant drawback, particularly for large-scale problems, as solving both the MP
and SP iteratively can result in a substantial computational burden. Secondly, achieving
convergence of the algorithm can be challenging, requiring optimal global solutions for
both the MP and the SP within a reasonable number of iterations. Failure to converge may
render the algorithm impractical or unable to provide optimal solutions. Additionally,
the effectiveness of these iterative algorithms can be sensitive to the problem’s structure,
making them less suitable for certain problem types. Moreover, highly complex models
with intricate constraints and decision variables may pose challenges for the performance
of these algorithms. In addition, the presence of binary variables in the proposed model
prevents direct dualizing of the SP. To deal with this and to ensure a feasible solution, we
propose a decomposition genetic approach to solve the robust optimization model. The
proposed approach aims to decompose the robust optimization model into two distinct
problems: an MP and an SP. The objective is to identify the worst-case scenario within the
SP using the genetic algorithm and determine the best production schedule within the MP.
We use the genetic algorithm to solve the SP due to its ability to explore a wide search space
and identify near-optimal solutions efficiently. In addition, the genetic algorithm’s ability
to handle mixed-variable optimization problems makes it a suitable choice for our robust
optimization model.

3.1. Decomposition Approach

This decomposition strategy allows us to effectively handle the uncertainty and con-
sider the robustness of the optimization solution. By solving both problems and exchanging
information between them, we aim to find the best possible production schedule that is
immune to the worst-case scenario of uncertain parameters. The Sub-problem (SP) is
specifically tailored to handle the worst-case scenario, primarily focusing on the energy
aspect of the model where RES are subject to uncertainty. The objective of the SP is twofold:
to maximize the costs associated with RES power and simultaneously minimize other
energetic costs. By finding the worst-case scenario of the SP, we can better understand the
impact of the uncertain RES on the overall energy costs. The MP is dedicated to optimizing
production planning across the scheduling horizon. It takes into account the solution
obtained from the SP and aims to optimize the production schedule by considering various
factors such as demand, capacities, and production costs. The objective of the MP is to
find the most efficient and cost-effective production plan given the uncertainties and con-



Energies 2023, 16, 5433

9 of 24

straints. The proposed resolution approach combines the resolution of these two problems
to address the robustness of the optimization problem. By solving the SP and exchanging
information with the MP, we can find the production schedule to account for uncertainties
and make it more resilient. This framework ensures a holistic approach to address the
robustness and optimality of the production scheduling problem under uncertainty. In
the following sections, we will provide a detailed description of the construction and
implementation of this framework.

3.1.1. The Sub-Problem: Genetic Algorithm

In the SP, the objective is to obtain a feasible solution that is robust under the worst-
case scenario. To achieve this, we focus on the max-min decision level and isolate the
energy variables from the production variables. The Sub-problem is defined as follows:

SP:
maxmind’a + f] (e; + e)) (32)
g, ae
Bx+Ha+J;e1 +]ep <h+ g1 (33)
X, e1,ep >0, ae {0,1} (34)

To solve this problem, the duality approach [19,24] can be employed. However, it
is important to note that the duality approach has its limitations. In cases where weak
duality holds, the approach may result in a bounded solution and fail to provide unique
optimal solutions. Additionally, the duality approach is not suitable for solving non-convex
programs. Furthermore, when dealing with large-scale problems that involve extensive
sets of variables and constraints, the problem becomes intractable. The computational
complexity increases significantly, making it challenging to obtain efficient and timely
solutions using the duality approach. Given these limitations, we use the genetic algorithm
(GA) to overcome these challenges. Pointed out by [25], the genetic algorithm can be applied
to convert the max-min problem into a min problem and find a robust solution. The GA is
a meta-heuristic algorithm inspired by the principle of natural evolution. It is commonly
used for solving complex optimization problems [26]. In this paper, we consider that the
GA maintains a population P, which represents all the potential scenarios. This population
evolves over iterations, converging towards the worst-case scenario and enabling the
identification of a robust solution. The population P consists of individuals that represent
solutions in the context of g;. Each individual in P corresponds to a specific solution, and its
performance under the worst-case scenario is evaluated using the objective function f(g;).
The objective function f(g,) defined in Equation (35) quantifies the performance or fitness
of a solution based on its worst-case outcome. It takes into account various factors, such as
costs, constraints, and performance metrics, relevant to the problem at hand. By evaluating
the objective function for each solution in P, we can assess the worst-case performance of
each individual solution in relation to the considered scenario g;.

f(g,)= mind"a + f] (e, +e;) (35)
ae

S.T (33) and (34)

The algorithm rewards the largest f(g;) and the best solution is determined by the
chromosome with the highest value of f(g;). In the context of solving complex optimization
problems using a genetic algorithm (GA), chromosomes are typically represented by binary,
integer, or real numbers. The choice of an appropriate chromosome representation plays
a crucial role in enhancing the efficiency of the GA [27]. In the proposed GA, the chro-

mosomes are composed of positive multiple deviations, 051)+, and the negative multiple

deviations, 051)7, defined previously in Section 2.3.1. Each gene within the chromosome is
an integer that takes a value of either 0 or 1. The specific coding of the solution using this

chromosome representation is illustrated in Figure 2.
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Figure 2. Solution coding for five periods scheduling.

By utilizing this coding scheme, the GA can explore and evolve the population of
chromosomes, searching for the most optimal combination of genes that leads to higher
values of the objective function f(g;). The genetic operators, such as selection, crossover,
and mutation, are applied to manipulate and modify the chromosomes in order to improve
their fitness and converge towards the best solution.

Hence, the steps of the proposed GA are presented in Algorithm 1:

Algorithm 1: Genetic-algorithm (x)

(1) Initialise first population P (i = 0)
(2) While (i < max number of generation):
(8) Forindividual g; in population P:
Evaluate fitness function f(gp)
4 i=i+1
(5) Create next population P(i) by selection, crossover and mutation.
(6) End while
(7) Calculate g; which has the biggest fitness
(8) Return g

3.1.2. Master Problem

At this stage, the objective is to determine the optimal production scheduling and en-
ergy management system operations while considering the worst-case scenario of g;, which
has been identified in the SP. To accomplish this, the Master Problem can be reformulated
as follows in MP1:

MP1:
¢ = mXinCTx +1 (36)
Ax<b (37)
Bx +Ha+Jie; +J,eo <h+g, (38)
n> dTa—i—g(e1 —|—e2), (39)
x, e;,ep >0, a€e{0,1}, (40)

In this formulation, the objective function ¢ aims to minimize the cost production cost
while incorporating the worst-case scenario component 1, which represents the energy-
related costs. The decision variables x correspond to the production planning and oper-
ations. The constraints in MP1 include the production-related constraints (37) to ensure
that the production plan satisfies capacity, demand, and other production requirements.
Additionally, the new constraint (38) is introduced to incorporate the worst-case scenario
g, obtained from the SP. These constraints ensure that the energy management system
operations align with the constraints imposed by the worst-case scenario. The constraint
(39) ensures that 11 captures the energy-related costs, considering the decision variables a,
e1, and ep. By reformulating the Master Problem as MP1, the optimization process seeks to
find the optimal values for the decision variables X, e1, and e;, considering the worst-case
scenario of g;. The objective is to minimize the overall cost while ensuring feasibility and
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robustness in production scheduling and energy management system operations. Since
the MP and the SP are strongly connected through the constraint (24), the exchange of
information between the two problems is facilitated by variables x and g;. In order to solve
the SP, it is necessary to have a feasible solution for x, which represents the production
scheduling. Similarly, to solve the MP, a feasible solution for g;, which corresponds to
the worst-case scenario, is required. The SP focuses on determining a feasible solution
under the worst-case scenario. By considering the given values of x, the SP evaluates the
corresponding values of g; that satisfy the constraints and represent the worst-case energy
scenario. This information is then transferred to the MP to ensure that the production
scheduling and energy management decisions take into account the robustness provided
by the worst-case scenario. Therefore, both problems should be solved in a coordinated
manner. To initiate this process, we begin with a feasible solution for g;, which represents a
feasible scenario. This selection of g; is crucial as it determines the production scheduling
and energy management decisions that optimize performance under the worst-case condi-
tions. Algorithm 2 is applied to solve the proposed model and to obtain the best solution of
the robust scheduling model:

Algorithm 2: Resolution algorithm ()

1) 81=6Gt,

(2) Solve MP1

(3) Find%, €64,

(4) g;* = genetic — algorithm (X)

(5) 81(0) = g1

(6) Resolve MP1

(7) Return xx, e;* er*,a* g;* and @*

Figure 3 shows the flow chart of the decomposition approach based on the genetic algorithm.

Start

1 I Create initiale population I

Initialize uncertain parameters I Evaluate fitness function (4d) of g, I

to their nominal value g, = g; T
1 I Population = population +1 I-—
Solve MP1 under the nominal 4
scenario and find [ Select individuals from old population l

Find the worst case scenario of g,
Worst case scenario

l | Evaluate fitness function of newly formed individuals |

g91=91
Population < max.
population?
No

/ Resolve MP1 /
‘ Return individual with the biggest fitness
s

Figure 3. Flow chart of the proposed approach.

4. Computational Experiments

In this section, a real-world case study is conducted on an animal-feed manufacturing
plant to achieve two objectives: (1) illustrate the proposed robust scheduling model, and
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(2) assess and compare the performance of different resolution approaches. The proposed
model is solved using PULP 2.4.1, a library for linear programming in Python 3.8. The
resolution approaches are implemented in Python 3.8. The computation times required
to solve the model and execute the resolution approaches are measured in CPU seconds,
providing insights into the computational efficiency of each method.

4.1. Manufacturing Process Description

This section looks at the case study of an animal-feed manufacturing company based
in Nantes, France. The animal-feed manufacturing plant is highly automated and energy-
intensive. Its production process involves several stages (Figure 4), including reception
and preparation of raw materials, grinding to reduce particle size, dosage and mixing
for formulation, granulation, and filtering to obtain the final products. The plant utilizes
a combination of conventional grid power, photovoltaic panels, and an energy storage
system to meet its electrical demand. This integrated energy system ensures a reliable
and sustainable energy supply. By considering the material flow, production processes,
and energy supply system, the proposed robust optimization framework can be applied
to optimize production scheduling and energy management decisions for the improved
efficiency and performance of the plant.

> 4/ Granulation

1 / reception of
animal nutrition raw
material

3/ Dosage & mix |

v

> 2/ Grinding

> 5/ Filtering

Figure 4. Manufacturing processes.

4.2. Input Data

In this research paper, the focus is on production scheduling for a day-ahead horizon,
which is divided into eight periods representing three hours each. The production parame-
ters presented in the rest of this paper are adjusted from Tecaliman [28], a technological
research center dedicated to the mastery of processes historically used in animal nutrition.
The desired demand for different product types is specified in Table 1, while Table 2 pro-
vides information on the characteristics of the production processes. To evaluate the costs
associated with inventory management, a unit inventory cost of 10 EUR/ton is considered
for the final products. Additionally, a backorder cost of 0.1 EUR/kg is included in the analy-
sis. Notably, the backorder cost is assumed to be significantly higher during the last period
to ensure that all demand is fulfilled by the end of the scheduling horizon. The initial inven-
tories for the final products are set as follows: 101 4 = 1015 = I04 = 10,5 = 0. Furthermore,
the maximum capacity for the inventory of final products is set at ,;;x =150 tons. Table 3 pro-
vides energy parameters used in the analysis, which have been adjusted from [17,19] studies.
The on-peak period comprises periods five and six, while the off-peak period consists of
periods one, two, three, four, seven, and eight. The power consumption reduction requests
(DSM) are set to Ry = 3 megawatt. To incentivize and motivate the reduction efforts, a finan-
cial incentive of ;" = EUR 500 per period is offered. The parameters related to the ESS are
derived from [29] and are assigned the following values: S;;;;, = 500 kWh, S,y = 2 MWh,
So = 500 kwh, Rt = R~ =150 kWh, 5" =4~ =09 and ¢™ = ¢~ = 30 EUR/MWh. The
budget of uncertainty of renewable energy, denoted as I’ (1), is set to four. This parameter
represents the allowable deviation or fluctuation in the renewable energy generation. It
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quantifies the level of uncertainty that can be tolerated within the optimization model.
Additionally, the French CO, emission factor associated with electricity consumption is
approximately 0.1 kg/kWh. The genetic algorithm parameters used to find the worst-
case scenario are presented as follows: size = 50, best_sample = 10, number of child =2,
generation_number = 20, mutation_chance = 10.

Table 1. Product demands (ton).

Parameters t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8
D1 4 (ton) 0 0 27 22 37 30 28 0
Dy 4 (ton) 0 0 5 3 4 9 7 0
Dy 5, (ton) 0 0 29 31 24 33 31 0
Dy 5, (ton) 0 0 3 6 8 6 7 0

Table 2. Process parameters.

Parameters p=1 p=2 p=3 p=4 p=5
C% (EUR) 0.1 0.1 0.1 0.1 0.1
T, (time/ton) 0.006 0.0075 0.009 0.008 0.008
op 1 1 1 1 1
N (ton) 125 125 125 0 0
Y0y, (ton) 15 15 15 0 0
Y0, , (ton) 15 15 15 0 0
Ep (MW /ton) 0.00114 0.008 0.003 0.028 0.001
Batch parameters p=1 p=2 p=3 p=4 p=5
K} (ton) - - 3 - -
ft (time) - - 0.05 - -

Table 3. Energy parameters: TOU prices and uncertain renewable energy.

Parameters t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8
¢!V (EUR/MWh) 50 50 50 50 50 50 50 50
%) (EUR/MWh) 70 70 70 70 110 110 70 70

G (megawatt) 0 0 0.2 1.11 1.67 1.22 0.2 0
oV (megawatt) 0 0 0073 044 022 0324 0087 0

4.3. Results and Discussion on the Benchmark Case

The simulation of the proposed algorithm in the benchmark case, considering TOU
prices and uncertain renewable energy, yielded a total cost of EUR 524.81. This cost consists
of an energy cost component of EUR 354.16 and an inventory cost component of EUR 170.65.
Furthermore, the CO, emissions associated with the production schedule were measured
to be 714.2 kg. Figure 5 depicts the production schedule of raw material 1, illustrating the
quantity of products processed at each stage. Figure 6 presents the corresponding inventory
levels associated with this production schedule. The flow of the production schedule for
product 1 is shown in Figure 7.
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Figure 5. Best production schedule for product 1.
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Figure 6. Product 1 inventory level.
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Figure 7. Best process flow (product 1).

The electrical energy plans related to the obtained production schedule are illustrated
in Figure 8. It is evident that the electrical energy plans associated with the production
schedule optimize the consumption of conventional energy during high-price periods,
specifically periods five and six. Notably, there is no grid energy consumption during
period five, indicating that a power consumption reduction request has been accepted.
During this period, the energy demand is exclusively met by on-site renewable energy
sources and the ESS. The operation of the ESS is dynamic and adheres to the capacity
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constraints of the system (Figure 9). It undergoes charging during off-peak periods (periods
two and three) when electricity prices are lower, and discharging occurs during on-peak
periods (periods five and six) when prices are higher. This flexible utilization of the ESS
optimizes energy management and reduces reliance on grid energy during peak hours.

Power Consumption

E Grid energy
25 N renewable energy
N ESS energy

201

15 1

10 1

Consumption level (MWh)

0.5 1

0.0 -

Figure 8. Electrical energy.

0.75 1 n
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065 1
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055 4

0501 = . | o —- )

T T
1 2 3 4DEI’iDd5 & 7 8

Figure 9. ESS operation dynamics.

The global distribution of energy consumption during the production scheduling hori-
zon is illustrated in Figure 10. The analysis reveals that energy consumption is distributed
across various sources. Conventional energy accounts for the majority share, representing
73.6% of the total energy consumption. Intermittent solar energy follows as the second
highest contributor, accounting for 27.9%. The ESS contributes 1.8% of the total energy
consumption. These findings indicate that the utilization of on-site renewable energy
sources and the ESS significantly contribute to enhancing energy efficiency and flexibility
within the manufacturing system. The integration of RES and ESS helps reduce reliance
on conventional energy sources and promotes sustainability. It is important to note that
this distribution is specific to the particular day of production analyzed in the study. The
results are influenced by the available renewable electrical energy, which depends on the
installed capacities of electricity production and storage on-site.
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Figure 10. Distribution of energy consumption.

4.4. Sensitivity Analysis

The proposed approach in our study allowed us to conduct a comprehensive sen-
sitivity analysis to assess the impact of various modifications on the study case. By
systematically altering specific parameters, we were able to evaluate the robustness
and effectiveness of our model in different scenarios. The following modifications were
considered: (1) remove renewable energy; (2) perform partial clearing; (3) integrate
uncertain spot prices instead of TOU prices; (4) modify on-peak periods; (5) modify
budget of uncertainty; (6) modify time granularity.

4.4.1. Scheduling Model under TOU Prices without Renewable Energy

In this case, the proposed model and algorithms are tested under only the TOU pricing
policy without considering a renewable energy system. Then, the electrical grid only
powers the manufacturing system. The obtained results of this case show that the daily
total cost is slightly increased compared to the previous scenario. However, the energy cost
(EUR 1021) has drastically raised (three times more expensive). This is due to the high cost
of grid energy. Thus, the rise of the energy bought from the grid leads to a considerable
increase of CO, emissions (1248 kg). However, in the absence of on-site RES, the inventory
cost (EUR 81) is reduced by 52% compared to the benchmark case and all the production
processes are operated nonstop to satisfy the final demands. As a consequence, the request
of power consumption reduction is not deployed in any period. The obtained results of
this case show that incorporating renewable energy helps to save energy costs and then
reduce CO; emissions. Furthermore, the results show the economic effectiveness achieved
due to the production scheduling flexibility gained by incorporating renewable energy in
implementing DSM policies.

4.4.2. Production Scheduling Model under Partial Energy Clearing

The objective of this experiment is to test the applicability of the model under a partial
energy clearing. To do this, a limit level of energy consumption, , is imposed and added
to constraint (2 h) as follows:

—

etz) +Rpar <R + B

For B = 0.5 MWh, the total cost is EUR 1046.19, which is slightly reduced compared to
the previous case and is ~100% higher than the one obtained in the benchmark case. The
energy cost is EUR 473.254, which is higher by EUR 119.1, 33.6%, than the one obtained
in the benchmark case. However, the inventory cost is EUR 572.93, which is significantly
higher compared to the two previous cases. This rise of inventory cost is essentially due to
the increase of inventory level to fulfill final demand.
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4.4.3. Production Scheduling Model Considering Uncertainty about RES and Spot Prices

In this scenario, uncertainty about electricity prices is considered and integrated into
(2)

the benchmarking model. Hence, the conventional energy price g, is based on uncertain
spot prices and assumed to belong to a budget-uncertainty set y, formulated as follow:

2 (2 2) (2
p2= (81" = 87 + aof.0y?
Aogz): 052)+ — 052)_ VteT
0<oP"<1 VteT
0<o®? <1 VteT
Tierol ) +0? " <T® }
where OEZH, 052)_ capture, respectively, the positive and the negative multiples deviation
from the nominal value. The total number of the multiples deviation must be controlled by
a budget of uncertainty parameter re.

As a result, the transformed robust MILP under both RES and electricity price uncer-
tainties takes the following form:

minC x+maxmind”a + fle; + g,e; (41)

X 8182 ae
Ax<b (42)
Bx+Ha+Jie; +Jeo <h-+ g (43)
X, e1,ep, ae{0,1} (44)

()

where g, represents the vector corresponding to spot prices, g;
In this simulation, the new model and the resolution methodology combining the C
and GC algorithm and the genetic algorithm are tested using the following data:

- The budget of uncertainty of spot prices is set to [?) = 5,

- The uncertain spot price parameters during a springer’s day are shown in Table 4 and
Figure 11. The use of springer’s day prices allows the elimination of the seasonality
effect on the test results.

Table 4. Numerical results for case study instances.

Parameters t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8
&52) 58.405 39.48 63.23 58.804 7742 8229 883055 85.99
gt@ 13.58 8.34 18.89 24.556 15.38 1211 11.36 10

Figure 11 illustrates the spot price variation during eight periods in a spring day. It

)

represents three different parts: the mean value of electricity spot price g;”’, the max value

g;z) + O't(z), and the min value ggz) - at(z). In this simulation, the total cost is equal to EUR

592.97, which is slightly higher than the benchmark case. The inventory and energy costs
are also increased compared to the first case. The CO; emission is raised to attain 968.5 kg.
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Figure 11. Spot prices in springer day.
4.4.4. Modification of Peak Periods

In this particular scenario, we made a modification to the on-peak period by switching
it from t = {5, 6} to t = {4, 7}. This change in the scheduling of on-peak periods had an
observable effect on the energy management scheme, as depicted in Figures 12 and 13.

Power Consumption

25 { EE Grid energy
BN renewable energy
BN ESS energy

Consumption level (MWh)

Period

Figure 12. Power consumption for the modified peak periods.
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Figure 13. ESS level for the modified peak periods.

Figure 12 illustrates the modified energy consumption pattern in comparison to the
benchmark experiment. It is evident that the energy consumption has been altered in the
periods t =4, 5, 6, and 7. Specifically, in the fourth period, the level of energy consumption
was approximately 1.5 MWh, which is significantly higher compared to the benchmark
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case, where it was 2.5 MWh. This modification in the on-peak period demonstrates the
influence of temporal scheduling decisions on energy consumption. By shifting the on-peak
periods to t = {4, 7}, there was a noticeable change in energy usage, particularly in the fourth
period, where the algorithm accepts a reduction of conventional energy consumption in
this periods. The energy requirement in this period is supplied by the renewable energy
and the ESS. The decrease in energy consumption during this period indicates a potential
optimization opportunity for reducing energy costs or ensuring the efficient utilization of
available resources.

The usage of the ESS In this scenario is shown in Figure 13. The ESS is charged in
periods t = 3,t =5, and t = 6 and discharged during the fourth and the seventh periods.

The cost obtained is 519.33, which is slightly lower than the one obtained in the
benchmark experiment.

4.4.5. Modification of Budget of Uncertainty

In order to assess the impact of the budget of uncertainty for renewable energy sources,
I'M, we conducted a scenario analysis where we varied its value from zero to eight. This
allowed us to examine how changes in the budget of uncertainty influence the performance
of the energy management system. Figure 14 shows the sensitivity analysis for I'"). The
x-axis represents IV, and the y-axis represents the total cost. The figures demonstrate
an increasing trend, suggesting a positive correlation between the two variables. In other
words, as the value of r increases, the total cost increases.

520

500

480

Total cost (€)

460

440

1 2 3 a 5 6 7 8 9
Budget of uncertainty

Figure 14. Sensitivity analysis for budget of uncertainty rd.

4.5. Verification and Validation of the Decomposition Genetic Approach

To ensure the validity and effectiveness of the proposed decomposition genetic ap-
proach, we conducted several computational tests. The objective of these tests was to
evaluate and compare the performance of our approach with other algorithms commonly
used in production scheduling. Specifically, we assessed the average costs achieved by
each algorithm and analyzed the computational time required for their execution.

4.5.1. Instance Generation

To analyze the impact of input parameters on simulation results, we generated nine
instances representing different problem sizes. These instances were divided into three
classes: small, medium, and large. The instances present the same number of processes.
Then, the entire production system is composed of three consecutive processes. The
number of items is equal to one for all processes: |I p|=1Vp € P. The number of periods,

representing the time horizon for scheduling, varied across the instances. Specifically, we
set the number of periods to 6 for the small instance, 24 for the medium instance, and 36 for
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the large instance. By adjusting the number of periods, we can observe the impact of time
granularity on solar power uncertainty. For the small instance, the mean solar power value
for each period was generated randomly from a uniform distribution U(5,24). Similarly, for
the medium instance, the range was set to 1 to 7, while for the large instance, it was set to
0.5 to 3. The budget of uncertainty was set to 3 for the small instance, while for the medium
instance it was set to 12. Finally, for the large instance, it was set to 18.

The other production parameters, such as demand and capacities, are generated ran-
domly based on [30]. The distinction between each class of instances is based on the varying
levels of uncertainty associated with the scheduling horizon. In other words, the difference
lies in the extent of unpredictability and variability that exists in the scheduling period.
The small instance represents a shorter scheduling horizon, resulting in relatively lower
uncertainty. On the other hand, the medium instance encompasses a longer scheduling
horizon, leading to increased uncertainty compared to the small instance. Finally, the
large instance exhibits the highest level of uncertainty as it involves the longest scheduling
horizon among the three classes. By incorporating instances with different levels of uncer-
tainty, we can assess the robustness and performance of our production scheduling model
under various scheduling horizons and evaluate its ability to handle different degrees of
uncertainty effectively.

4.5.2. Results and Discussion

We tested the proposed approach for three variability levels. Results were compared to
the worst-case scenario obtained by the nested Column and Constraint algorithm. Table 5
provides the instance references (S1, S2, S3, M1, M2, M3, L1, L2, L3) along with the
corresponding costs and execution times for both the proposed approach and the nested
CCG algorithm.

Table 5. Comparison between the proposed approach and the nested CCG algorithm.

Instance Proposed Approach Nested CCG Cost Proposed Approach Nested CCG
Reference Cost (EUR) (EUR) Execution Time (s) Execution Time (s)

S1 6022.4 6022.4 0.82 2.46
Small ) 5817.17 5817.17 0.78 2.38
S3 5966.83 6049.8 0.81 2.53

M1 19,874.54 19,934.97 8.86 16.32

Medium M2 20,136.31 20,193.8 9.32 15.29
M3 19,797.62 19,812.53 8.81 15.78

L1 31,238.02 32,360.94 28.54 351.29

Large L2 29,754.05 30,124.99 29.89 364.87

L3 31,365.63 31,563.63 28.97 331.13

The comparison of the proposed approach and the nested CCG algorithm, as shown in
the last table, reveals some notable insights. Firstly, in terms of cost, the proposed approach
consistently achieves similar results in S1 and S2. In this case, the proposed approach found
the worst-case scenario related to the solar power generation. In contrast, for the other
instances (S3, M1, M2, M3, L1, L2, L3), the proposed approach found costs lower than
those found by the nested CCG algorithm. This implies that the proposed approach did not
encounter the worst-case scenario in these instances. Instead, it managed to find alternative,
more cost-effective solutions. The discrepancy in cost between the two approaches can be
attributed to the exponential increase in the search space of the proposed approach as the
problem size increases.

Secondly, concerning execution time, the proposed approach outperforms the nested
CCG algorithm in terms of speed. It demonstrates significantly shorter execution times for
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all instances, suggesting that it is a more efficient algorithm for solving the given problem.
Overall, the results highlight the effectiveness of the proposed approach in terms of cost
and execution time, making it a favorable choice for addressing the problem at hand.

In developing the proposed production scheduling model, it is important to acknowl-
edge the limitations inherent in its design and application. Firstly, to simplify the complexity
of real-world manufacturing processes, certain assumptions were made during the model
development. These assumptions include stable production parameters, constant material
availability, and reliable equipment performance. These simplifications may not fully
capture the dynamic nature and uncertainties present in actual production environments.
Moreover, the model’s effectiveness is reliant on the availability and quality of data used
for parameter estimation and optimization. Inaccurate or limited data may introduce biases
and affect the model’s performance, potentially leading to suboptimal scheduling decisions
or inaccurate cost estimations. Additionally, the scalability of the model should be con-
sidered, as solving large-scale optimization problems may pose computational challenges,
especially with the presence of binary variables.

5. Conclusions

This study proposes an approach to address the integration of uncertain on-site renew-
able energy and volatile demand-side management policies into the production scheduling
problem for consecutive processes. The manufacturing process in focus relies on multiple
energy sources, including the conventional grid, on-site intermittent renewable energy, and
an ESS. The approach formulates a two-stage robust mixed-integer linear programming
model to evaluate both the economic and environmental performances of incorporating
energy-scheduling flexibility. In the first stage, an optimal production schedule is generated
to minimize the total production cost. In the second stage, decisions regarding the energy
management system are made based on the production schedule to minimize energy costs
under the worst-case scenario of renewable energy supply. To solve this complex opti-
mization problem, a decomposition algorithm based on a genetic algorithm is employed.
Experiments and sensitivity analysis are conducted using a real case study to assess the
effectiveness of the proposed model in generating optimal decisions for the manufacturing
system while ensuring flexibility in aligning the production schedule with the renewable
energy supply and DSM policies. The numerical results demonstrate that the algorithm
can effectively align a near-optimal production schedule with the availability of renewable
energy and DSM policies, resulting in reduced production and energy costs as well as
decreased CO, emissions.

There are several potential avenues for future research in the field of production
scheduling and renewable energy integration. These directions can further enhance and
expand the proposed model. Firstly, considering the dynamic nature of renewable energy
sources, future research can explore the incorporation of real-time data and forecasting
techniques to improve the accuracy of renewable energy generation predictions. By inte-
grating advanced forecasting methods, such as machine learning or artificial intelligence
algorithms, into the model, more precise estimations of renewable energy availability can
be obtained, leading to improved scheduling decisions and cost optimization. Moreover,
the proposed model can be extended to incorporate other aspects of sustainable manufac-
turing, such as the consideration of carbon footprints or other environmental indicators. By
integrating environmental objectives into the optimization framework, manufacturers can
strive for not only cost reduction but also minimizing their overall environmental impact.
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Appendix A

Table A1l. Sets and indexes.

Symbol Description

t Index for period, t=1,2,..., I TI

p.p Index for processes, p,p’ =1,2,..., Ipl

i Index for process,i=1,2,..., |,

T Set of time periods in scheduling horizon

P Set of processes

b Set of final processes

0 Set of batch processes

Ip Set of items produced by the process p

N Set of worst-case scenarios

1/ 1o Set of (on-site renewable energy/spot prices) uncertainty parameters
Table A2. Parameters.

Symbol Description Unit

cz Unit cost per item buffered in process p EUR

c’z Unit inventory cost at period t EUR

cf Unit cost per final product backordered at period t EUR

bipp 1 if the item i produced by the process p is transmitted to its successor p/, 0 otherwise -

Dips Demand for final product o; , at period t, p € ¢ ton

Ty Cycle time for producing one unit of product at process p time

op Performance of process p -

Np Buffer capacity of product i for process p ton

Iinax Inventory capacity of finals products ton

y0;, The initial intermediate stock level of product i at process p. ton

10, The initial stock level of final product i at process p, p € & ton

Kp Lot size of batch process p, ton

fr Setup time for batch process p time

Ept Power consumed for producing one unit in process p at period t MW /ton

Smax Maximum storage capacity for the ESS MWh

Smin Minimum storage capacity for the ESS MWh

S Initial energy level of the ESS MWh

RTY/R™ Charging and discharging capacities of the ESS MWh

ct/c- Charging and discharging capacities of the ESSESS charging and discharging cost EUR/MWh

ggl) On-site renewable energy price at period t EUR/MWh

ggz) Conventional energy price at period t EUR/MWh

Gy Renewable energy available at period t MW

g Incentive received for energy consumption reduction at period t EUR

gt(l) Deviation for power generation of on-site renewables at period t MW

gt(z) Deviation for spot prices at period t EUR

r Budget of uncertainty for on-site renewables availability -

r Budget of uncertainty for energy spot prices -
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Table A3. Decision variables.

Symbol Description
Xipt Amount of item i produced in process p at period t
Yipt Inventory level of item i in process p at period t
xﬁ)p, ; Amount of item i produced in process p at period t and transferred to process p’ at period t + 1
xlfzp)t Amount of item i produced in process p at period t and buffered at process p at period t
yl(? _ Inventory of item i in process p at period t and transferred to process p’ at period t + 1
y,%) ; Inventory of item i in process p at period t and buffered at process p at period t + 1
Qi p,t Inventory level of item i in final process p at period t
Vipt Backorder of final product i in process p at period t
Sep,t Binary variable associated to batch process p
S ESS energy level at period t
i/ Amount of power to charge/discharge the ESS at period t
gt(z) Conventional energy consumed in period t
et(l) On-site renewable energy consumed in period t
a Decision of accepting or not energy consumption reduction request at period t
ot(lH / 051) Variables to define availability of renewable energy at period t
ot(z)+ / 052)7 Variables to define the spot prices variation at period t
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