Qualitative study of gesture annotation corpus : Challenges and perspectives - Department of Natural Language Processing & Knowledge Discovery
Communication Dans Un Congrès Année : 2024

Qualitative study of gesture annotation corpus : Challenges and perspectives

Étude qualitative du corpus d'annotation des gestes : Enjeux et perspectives

Résumé

Effective data management and corpus enrichment are essential for advancing research methodologies in gesture studies. This paper critically examines the practices surrounding data management and corpora enrichment within a gesture dataset, focusing on qualitative analysis and methodological challenges. It identifies key issues in gesture annotation, including segmentation, labeling gestures, and lexical affiliates, revealing significant discrepancies and highlighting the complexities in interpretation. Despite these challenges, the inclusion of gesture dataset annotations marks progress in gesture research, offering opportunities for refining methodologies and enhancing data utilization. Strategies proposed aim to improve annotation practices, promote methodological transparency, and ensure the reliability of enriched corpora for nuanced analysis in gesture studies. This study contributes to advancing gesture research methodologies, emphasizing the importance of rigorous annotation protocols and fostering a standardized approach to enhance the utility and reliability of annotated datasets.
Fichier principal
Vignette du fichier
3686215.3688820.pdf (792.94 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
licence

Dates et versions

hal-04767088 , version 1 (05-11-2024)

Licence

Identifiants

Citer

Mickaëlla Grondin-Verdon, Domitille Caillat, Slim Ouni. Qualitative study of gesture annotation corpus : Challenges and perspectives. ICMI Companion '24: Companion Proceedings of the 26th International Conference on Multimodal Interaction, Nov 2024, San Jose, Costa Rica. pp.147-155, ⟨10.1145/3686215.3688820⟩. ⟨hal-04767088⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More